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ABSTRACT

Engineered zinc finger nucleases (ZFNs) induce
DNA double-strand breaks at specific recognition
sequences and can promote efficient introduction
of desired insertions, deletions or substitutions at
or near the cut site via homology-directed repair
(HDR) with a double- and/or single-stranded
donor DNA template. However, mutagenic events
caused by error-prone non-homologous end-joining
(NHEJ)-mediated repair are introduced with equal or
higher frequency at the nuclease cleavage site.
Furthermore, unintended mutations can also result
from NHEJ-mediated repair of off-target nuclease
cleavage sites. Here, we describe a simple
and general method for converting engineered
ZFNs into zinc finger nickases (ZFNickases) by
inactivating the catalytic activity of one monomer
in a ZFN dimer. ZFNickases show robust
strand-specific nicking activity in vitro. In addition,
we demonstrate that ZFNickases can stimulate HDR
at their nicking site in human cells, albeit at a lower
frequency than by the ZFNs from which they were
derived. Finally, we find that ZFNickases appear

to induce greatly reduced levels of mutagenic
NHEJ at their target nicking site. ZFNickases
thus provide a promising means for inducing
HDR-mediated gene modifications while reducing
unwanted mutagenesis caused by error-prone
NHEJ.

INTRODUCTION

Zinc finger nucleases (ZFNs) are chimeras of engineered
zinc finger domains fused to the non-specific nuclease
domain of the restriction enzyme FokI (1). Dimers of
ZFNs generate site-specific DNA double-strand breaks
(DSBs) with each ZFN monomer cutting one DNA
strand (2). Obligate heterodimeric versions of the FokI
nuclease domain have been engineered that minimize
homodimeric interactions between ZFN monomers
within a pair (3–6).

ZFNs, as well as engineered homing endonucleases and
transcription activator-like effector nucleases (TALENs),
can be used to improve the efficiency of homology-
directed repair (HDR) in a variety of different organisms
and cell types (7–9). Repair of a nuclease-induced DSB
mediated by an exogenous ‘donor template’ can be
exploited to introduce sequence alterations or insertions
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at or near the site of the break. Although nuclease-induced
HDR is highly efficient, repair of a DSB can also occur by
the non-homologous end-joining (NHEJ) pathway.
NHEJ-mediated repair of nuclease-induced DSBs has
been shown to be error-prone, leading to insertion or
deletion mutations (indels) at the site of the break (10)
or the formation of chromosomal translocations (11).
NHEJ and HDR are believed to be competing pathways
(12). Thus, although HDR-mediated alterations can be
efficiently introduced using engineered nucleases, alleles
can also acquire NHEJ-mediated mutations [e.g.
(13,14)]. Unwanted alterations at other off-target
genomic sites can also be introduced by NHEJ-mediated
repair; e.g. two recent reports have shown that ZFNs
introduce a greater spectrum of off-target DSBs (and
therefore NHEJ-mediated mutations) than previously
appreciated (15,16).

Given the potential undesirable consequences of
introducing DSBs in living cells, we hypothesized that it
might be possible to induce DNA repair with single strand
breaks (SSBs or nicks) as a less mutagenic alternative to
DSBs. Thousands of SSBs naturally occur per day in
human cells, generally without deleterious consequences
(17). The concept of harnessing the benign nature of
nicks for stimulation of homologous recombination has
been previously suggested in the context of theoretical
models and recombination induced by RAG proteins
(18–21). In addition, homing endonucleases have been
demonstrated to stimulate HDR when converted to
nickases (22–27). However, conferring novel DNA
binding specificities to this class of enzymes without dis-
rupting catalytic activity has proven to be challenging
because the domains for DNA recognition and cleavage
are not structurally independent (8) as they are for ZFNs
and TALENs.

Here, we describe a general method for creating
site-specific zinc finger nickases (ZFNickases). To do
this, we employed obligate heterodimeric ZFNs (4) and
introduced a mutation that had previously been described
to inactivate FokI cleavage activity (D450A) (28–30) into
one monomer, thereby directing a break to only one
strand, as recently shown with the native FokI enzyme
(31). We demonstrate that ZFNickases can generate
DNA single strand breaks efficiently in vitro and can
also induce targeted HDR in cultured human cells with
significantly lower rates of associated NHEJ-mediated
mutation at the nicking site. ZFNickases provide an
important additional tool for performing highly precise
genome editing with reduced levels of NHEJ-mediated
mutagenesis.

MATERIALS AND METHODS

Qualitative in vitro analysis of ZFN and ZFNickase
activities

For in vitro protein expression experiments, we con-
structed vectors derived from pMLM290 and pMLM292
[Addgene plasmids 21872 and 21873, respectively (14)].
Zinc finger domains in the ZFNs HX735, VF2468 and
VF2471 have been described previously (14) and were

cloned as XbaI/BamHI fragments into pMLM290 and
pMLM292 vectors modified to contain 3xFLAG instead
of 1xFLAG epitopes. Previously reported zinc finger
domains designed to bind the human CCR5 gene (32,33)
were assembled from overlapping oligonucleotides
generated by DNAWorks (34) and cloned into the
3xFLAG-pMLM290 and 3xFLAG-pMLM292 vectors.
The nuclease inactivating D450A mutation (numbered
relative to the native FokI enzyme) (28) was introduced
by QuikChange Lightning Site-Directed Mutagenesis
(Agilent). The protein lysates were prepared following
manufacturer’s instructions for the T7 TnT Quick
Coupled Transcription/Translation System (Promega)
using 1 mg plasmid template per 50 ml lysate and
incubating for 90min at 30�C.
To generate target sites for in vitro analysis, annealed

oligonucleotides with compatible overhangs were cloned
into the BsaI restriction sites of pBAC-lacZ (using oligo-
nucleotides OC152/OC153 for CCR5; Supplementary
Table S1) as described previously (35) or the BglII/SpeI
sites of pCP5 (a gift from Daniel Voytas; using
oligonucleotides OC665/OC666 for VF2468, OC667/
OC668 for VF2471 and OC671/OC672 for HX735;
Supplementary Table S1) as described previously (36).
Primers labeled with 6-carboxyfluorescein (6-FAM) were
used to amplify DNA fragments for cleavage assays with
the Expand High Fidelity PCR System (Roche Applied
Science). The primers OC213/OC215 were used for
pBAC-lacZ-derived targets and OC417/OC418 were used
for pCP5-derived targets (see Supplementary Table S1 for
sequences of primers).
Cleavage reactions were performed under light-

protected conditions using opaque black tubes in 100 ml
volumes with 10 ml protein lysate and 80 ng 6-FAM-
labeled cleavage substrate in 1x NEBuffer 4 (New
England Biolabs). Reactions were incubated at 37�C for
1 h, purified using a Minelute PCR Purification kit
(Qiagen) according to the manufacturer’s instructions
with final elution into 20 ml 0.1X buffer EB, and submitted
to the DNA Core Facility at Massachusetts General
Hospital (Cambridge, MA) for denaturing capillary elec-
trophoresis with fluorescent detection. Analysis of the
resulting data was performed using Peak Scanner
Software v1.0 (Applied Biosystems).

Chromosomal EGFP repair assay in U2OS cells

For the generation of the reporter cell lines used in the
chromosomal enhanced green fluorescent protein (EGFP)
repair assay, the cleavage site for the HX735 ZFNs (14)
was cloned between the lacZ open reading frame (ORF)
and the 50-truncated EGFP (qGFP) gene in plasmid
pLV.LacZqGFP (37). The donor plasmid used for these
experiments harbors a 50-truncated lacZ (qlacZ) gene
followed by the corrected EGFP ORF and also lacks a
promoter (pUC. qLacZ-GFP) (38).
To generate ZFNs and ZFNickases for mammalian

expression, zinc finger domains were cloned into a
previously described dual expression plasmid in which
the cytomegalovirus (CMV) promoter drives expression
of two ZFN monomers separated by a self-cleaving T2A
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peptide (6). The D450A mutation was introduced into one
or both of the FokI subunits in this vector as needed by
subcloning or using the QuikChange Lightning
Site-Directed Mutagenesis kit (Agilent).
For the chromosomal EGFP repair assay, U2OS-based

reporter cell lines containing the LacZ-HX735-qGFP
target locus were generated by lentiviral transduction
(LV.CMV.LacZ-HX735-qGFP) with a viral dose that
rendered <1% of cells resistant to geneticin-sulfate
(0.4mg/ml), thus preferentially generating reporter cells
with a single copy target locus (37). Reporter cells,
cultured in Dulbecco’s modified Eagle’s medium
supplemented with 10% fetal bovine serum (FBS) and
1% penicillin/streptomycin (Invitrogen), were seeded at
a density of 50 000 cells/well in 24-well plates. After 24 h,
the transfection was performed using X-tremeGENE HP
DNA Transfection Reagent (Roche Applied Science)
following the manufacturer’s instructions. Transfection
cocktail included 150 ng of ZFN or ZFNickase expression
plasmids, 600 ng of donor plasmid (pUC.qLacZ-GFP)
and 100 ng of a plasmid encoding for mCherry (39) to
identify transfected cells. The extent of gene targeting
was assessed after 8 days using flow cytometry
(FACSCalibur; BD Biosciences) to determine the percent-
age of EGFP-positive cells in the fraction of mCherry-
positive cells. Experiments were performed at least twice
independently in duplicate.

Traffic Light Reporter assay in HEK293 cells

Traffic Light Reporter (TLR) experiments were performed
as described by Certo et al. (22). Briefly, oligonucleo-
tides each harboring one or two ZFN or ZFNickase
target sites (oligonucleotides ams1228/ams1229 for
the VF2468 and VF2471 sites and oligonucleotides
ams1230/ams1231 for the CCR5 site) were cloned into
the SbfI and SpeI restriction sites of the TLR2.1
plasmid. Note that the VF2468 and VF2471 targets
overlap significantly, so only one TLR reporter encom-
passing both sites was created. Cell lines were generated
by transduction of HEK293T cells with limiting amounts
of a lentivirus containing a target site of interest cloned
into the TLR, followed by selection in 1 mg/ml puromycin.
The puromycin-resistant population was then bulk sorted
by fluorescence-activated cell sorting (FACS) to isolate a
polyclonal population of EGFP-negative, mCherry-
negative cells. These cells were cultured in glutamine-free
Dulbecco’s modified Eagle’s medium supplemented with
2mM L-glutamine, 10% FBS and 1% penicillin/strepto-
mycin (Invitrogen). For transfections, 1� 105 reporter
cells were plated per 24-well plate and transfected 24 h
later with 0.5 mg of ZFN- or ZFNickase-encoding
plasmids and 0.5 mg Donor-T2A-BFP plasmid (Addgene
plasmid 31485) using Fugene6 reagent according to the
manufacturer’s protocol (Roche Applied Science). Cells
were split into a six-well plate 24 h post-transfection, and
analyzed using a flow cytometer (LSRII or FACSAria;
BD Biosciences) 72 h post-transfection. Transfection effi-
ciency was controlled for by gating on 103 to 104

BFP-positive cells prior to HDR and NHEJ analysis.
Experiments were performed independently three times.

RESULTS

In vitro enzymatic activities of ZFNs and ZFNickases

Based on recent work demonstrating that mutational
inactivation of one monomer in a FokI dimer can
convert this nuclease into a nickase (31), we reasoned
that a similar strategy might be used to convert a ZFN
dimer into a nickase. To test this possibility, we used four
previously described ZFN pairs targeted to sites in three
endogenous human genes; one to the HOXB13 gene
(HX735), two to the VEGF-A gene (VF2468 and
VF2471) and one to the CCR5 gene (CCR5) (14,32,33).
For each ZFN pair, we arbitrarily designated one of
the monomers as the ‘Left monomer’ and the other as
the ‘Right monomer’ (Supplementary Table S2) and
generated variants of each monomer harboring a previ-
ously described mutation (D450A) that inactivates the
catalytic activity of the FokI nuclease domain (28).

To test whether inactivation of one monomer in a ZFN
pair might result in generation of a zinc finger nickase
(ZFNickase), we developed a qualitative version of an
in vitro assay similar to one recently described by
Sanders et al. (31) that allowed us to assess the introduc-
tion of breaks into either strand of a double-stranded
DNA fragment. In this system, a target site for a ZFN
is positioned asymmetrically within a DNA fragment that
is fluorescently labeled on the 50-ends of both DNA
strands (Figure 1). This DNA is then incubated with
different combinations of active and inactive Left/Right
monomers that have been co-expressed in vitro using a
coupled transcription/translation system (40). Following
this incubation, fluorescently labeled DNA strands of
various sizes are generated depending upon whether the
top or bottom strands are cut or not cut (Figure 1). These
fluorescently labeled products can be analyzed under
denaturing conditions using capillary electrophoresis,
which separates DNA molecules based on size and
enables visualization of 6-FAM-labeled DNA strands.

Using this qualitative in vitro assay, we tested the effects
of various combinations of active/inactive monomers for
the HX735, VF2468, VF2471 and CCR5 ZFNs on their
target DNA sites. As expected, with all four active
Left/active Right pairs, both strands in the target sites
were cleaved and with all inactive Left/inactive
Right pairs, no cleavage of either strand was observed
(Figure 2a–d, top and bottom panels). However, when
pairs of active/inactive monomers were tested, we
observed preferential cleavage of only one DNA strand,
the strand with which the active ZFN monomer is
expected to make its primary DNA base contacts
(Figures 2a–d, middle panels). Analysis of the electro-
pherograms in Figure 2 reveals that the cleavage positions
for all of our ZFNickases are either identical or within 1 nt
of the cleavage positions of their matched parental ZFNs
(data not shown). These results demonstrate that intro-
duction of an inactivating FokI mutation into one
monomer in a ZFN obligate heterodimer pair provides a
general method for converting ZFNs into ZFNickases and
that nicking activity can be preferentially directed to
one particular strand of the DNA.
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Testing ZFNickase activities using a human cell-based
chromosomal EGFP reporter assay

Having established the activities of ZFNickases in vitro,
we next wished to test whether these nickases, like their
nuclease counterparts, could induce HDR at their target
sites in human cells. To do this, we used a previously
described, human cell-based reporter gene assay for moni-
toring HDR (37). In this assay, a 50 truncated EGFP
reporter gene bearing a ZFN target site of interest is
chromosomally integrated using a viral-based vector
(Figure 3a). HDR with an appropriate donor construct
leads to restoration of an intact EGFP reporter gene.
Thus, the percentages of EGFP-positive cells arising
after the co-delivery of ZFNs or ZFNickases and the
donor plasmid reflect the abilities of ZFNs to stimulate
HDR at the target locus.

We tested ZFNs and corresponding ZFNickases
targeted to the HX735 site for their abilities to induce
HDR in the EGFP reporter assay. ZFNs targeted to the
HX735 locus were able to stimulate gene repair, inducing

EGFP expression in 0.29% of transfected cells, a statistic-
ally significant increase relative to the 0.01% of cells that
expressed EGFP upon transfection with a catalytically
inactive ZFN (Figure 3b). Interestingly, expression of
corresponding HX735 ZFNickases designed to nick one
strand or the other restored EGFP expression in 0.14 and
0.05% of cells, although only the former increase in HDR
was statistically significant relative to the level observed
with the catalytically inactive ZFN. Thus, these results
suggest that a ZFNickase can induce HDR in this
EGFP reporter gene assay, albeit at a lower level than
that observed with its parental ZFN.

Assessment of HDR and NHEJ induced by ZFNs and
ZFNickases in human cells

To further test the ability of ZFNickases to induce HDR
and to simultaneously assess the rate of NHEJ-mediated
mutagenesis at the same target site, we used the recently
described ‘TLR’ (22). In this assay, the reporter harbors a
nuclease target site (or sites) of interest positioned within

Figure 1. A qualitative in vitro assay to detect cleavage and nicking by ZFNs and ZFNickases. An asymmetrically positioned full ZFN target site is
placed within a DNA fragment that has been labeled on both its 50-ends with 6-FAM fluorescent dye (depicted in blue). Only 6-FAM labeled strands
will be detected in the denaturing capillary electrophoresis assay. In the example shown, the ZFN target site is positioned toward the left end of the
DNA fragment. In this configuration, if nicking of the top strand occurs, this results in the generation of one short and one full-length 6-FAM
labeled product. If nicking of the bottom strand occurs, this results in the generation of one medium-length and one full-length 6-FAM labeled
product. Cleavage of both strands results in the generation of short and medium-length products. Sample electropherograms are shown with
arbitrary intensity units on the y-axis and DNA strand length on the x-axis. DNA strands expected from nicking or cleavage reactions are designated
by black arrows. Note that full-length DNA strands due to incomplete enzyme reactions may be present in addition to the expected products.
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a defective EGFP coding sequence that is followed
by an mCherry coding sequence joined out of frame to
the EGFP gene via a T2A peptide sequence. HDR with
an exogenously provided donor template reconstitutes
a functional EGFP coding sequence, turning cells green,
whereas NHEJ-induced indels can create frameshifts that
place the downstream mCherry protein in-frame, turning
cells red (Figure 4a). Thus, with these reporter cells, the
extent of nuclease-induced HDR and NHEJ can be moni-
tored simultaneously for a given target site using flow
cytometry.
We derived polyclonal HEK293T cell lines harboring

the TLR with targets for either the VF2468 and VF2471
ZFNs [a single cell line with both overlapping targets
present, just as they occur in the endogenous locus (14)]
or the CCR5 ZFNs. For each ZFN pair, we transfected
combinations of plasmids encoding active and/or inactive
ZFN monomers together with a donor template for
correcting the EGFP gene. Flow cytometry was then
used to determine HDR and NHEJ rates by quantifying
the percentages of EGFP-positive and mCherry-positive
cells, respectively (Figure 4b–e). For all three target sites,
ZFNs tested showed robust activities, inducing high
percentages of EGFP-positive cells (indicative of HDR
events) and even higher percentages of mCherry-positive
cells (indicative of NHEJ events) in transfected cells
(Figure 4b, left column). All but one of the six

ZFNickases tested for the three target sites induced sig-
nificantly higher levels of EGFP-positive cells compared
with negative controls (Figure 4b, c, d and e). The per-
centage of EGFP-positive cells for the VF2468 and CCR5
ZFNickases are 3- to 10-fold lower than what was
observed with their corresponding ZFNs (Figure 4c and
e, compare second and third white-colored columns with
the first white-colored column), suggesting that HDR is
induced by ZFNickases but again at a lower rate than is
observed with the parental ZFNs. The activities of the
VF2471 ZFNickases were detectable but quite low
despite the high activity of the VF2471 ZFNs
(Figure 4d). However, for all three target sites, the
ZFNickases consistently induce lower percentages of
mCherry-positive cells relative to their matched ZFNs,
suggesting that fewer mutagenic NHEJ-mediated events
are occurring with the nickases compared with the nucle-
ases (Figure 4c, d and e). In addition, the ratio of
the percentage of EGFP-positive cells to the percentage
of mCherry-positive cells is higher for five of the
six ZFNickases compared with the parental ZFN
(Figure 4f, g and h). We also found, in accordance with
previous studies conducted with homing endonucleases
and nickases, that increased donor template concentra-
tions were associated with increased nuclease- and
nickase-induced HDR frequencies (Supplementary
Figure S1 and data not shown) (22,23,27). Interestingly,

(b)(a)

(d)(c)

Figure 2. Site-specific nicking of DNA in vitro by ZFNickases. Substrates labeled with 6-FAM fluorescent dye harboring (a) HX735, (b) VF2468,
(c) VF2471 or (d) CCR5 binding sites were incubated with active Left/active Right (+/+), inactive Left/active Right (�/+), active Left/inactive Right
(+/�) and inactive Left/inactive Right (�/�) ZFN monomers. Cleavage products were subjected to denaturing capillary electrophoresis. Axes are
arbitrary intensity units (y-axis) and DNA strand length (x-axis). The y-axis is differentially scaled for each plot, whereas the x-axis is scaled
uniformly for all plots. Representative electropherograms are shown, but all experiments were performed in triplicate (data not shown). Note
that the HX735, VF2468 and VF2471 targets were cloned into the pCP5 vector that results in asymmetric placement left of center within the
substrate similar to the configuration depicted in Figure 1. However, the CCR5 target is cloned into pBAC-lacZ, which results in binding site
placement right of center relative to the substrate; when the top strand is cleaved in this configuration, the fragment generated is longer than when
the bottom strand is cleaved.
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the effect of donor template concentration appears
to be more dramatic on nickase-induced HDR than on
nuclease-induced HDR (Supplementary Figure S1 and
data not shown). These results suggest that ZFNickases
induce higher levels of HDR events relative to NHEJ
events compared with ZFNs. Our results indicate that
ZFNickases may offer the benefit of significantly
reduced NHEJ rates albeit with a reduction in HDR
activity in cells.

DISCUSSION

In this report, we describe a general and simple method
for converting ZFNs into ZFNickases. Introduction of a
previously described D450A mutation into one monomer
of a ZFN pair can generate a ZFNickase. This result
parallels recent work from Halford and colleagues in
which they used a similar approach to convert the
wild-type FokI restriction enzyme into a nickase.
Our qualitative in vitro data demonstrate that each
ZFNickase preferentially cuts one DNA strand at a

position either identical or within 1 nt of the cut positions
of its matched ZFN. Furthermore, the data show that
each ZFN monomer cuts the DNA strand to which it
makes most of its DNA base contacts, providing direct
experimental support for the model of binding and
cleavage illustrated in Figure 1. Testing in two different
human cell-based reporter systems revealed that
ZFNickases can induce HDR-mediated repair, albeit at
lower levels than matched ZFNs from which they were
derived. Of the eight ZFNickases we tested (two pairs
each derived from ZFNs targeted to four different target
sites; data presented in Figures 3 and 4), six induced stat-
istically significant levels of HDR. The levels of HDR we
observed with the ZFNickases ranged widely, from
between 2-fold and >100-fold lower than those observed
with the corresponding ZFNs from which they were
derived. However, for at least some of the ZFNickases
we tested (e.g. HX735 �/+, VF2468 �/+ and +/� and
CCR5 �/+ and +/�), the levels of HDR induced were
of sufficiently high frequency (�0.1%) to be useful for
research applications and some potential therapeutic
strategies. Our observations that ZFNickases can induce
HDR events and that HDR efficiency is positively
correlated with the concentration of donor present in
cells are consistent with the findings of others using
homing endonucleases engineered to induce nicks
(22–27). However, to our knowledge, our findings are
the first to report that nickases derived from ZFNs can
be used to induce HDR events.
Although absolute rates of HDR were lower for

ZFNickases than ZFNs in our human cell-based
reporter assays, we also observed a consistent reduction
in mutagenic NHEJ rates in the TLR assay. This reduc-
tion is not entirely surprising given that nicks are typically
repaired without causing mutations (17). However, we do
not know the origin of the residual NHEJ-mediated events
we observed with some of the ZFNickases we tested.
Possible explanations include conversion of a nick into a
DSB that may occur with replication fork collapse (see
below) or weak residual homodimerization of the active
ZFNickase monomer that may lead to cleavage at the
intended target site. Use of improved second-generation
FokI heterodimer variants (3) may reduce activity due to
the latter mechanism [we used first-generation FokI
heterodimer variants (4) for this study].
Importantly, for five of the six ZFNickases we tested in

the TLR assay, the ratio of HDR to NHEJ events was
increased compared with the three matched ZFNs from
which they were derived. These results demonstrate
that ZFNickases can induce HDR events with relatively
lower rates of NHEJ-mediated mutations created at the
nick site. We do not currently know the mechanism of the
ZFNickase-mediated HDR or the improved HDR:NHEJ
ratios we observe. One possibility for the improved
HDR:NHEJ ratios is that a nick in the path of a DNA
replication fork may be converted to a DSB leading to
fork collapse, the repair of which would be expected
to lead to repair by either NHEJ or HDR. A potential
hypothesis for why we observe a preferential shift from
NHEJ to HDR with ZFNickases may be the more
frequent repair of nick-induced replication fork collapse

(a)

(b)

Figure 3. Assessment of ZFNickase-mediated HDR using a human
cell-based chromosomal EGFP reporter assay. (a) A schematic of the
U2OS.LacZ-HX735-qGFP reporter construct integrated in a U2OS cell
line. Note that the orientation of the binding site in the reporter is
inverted relative to the configuration at the HX735 endogenous locus,
for which the Left and Right designations were originally (but
arbitrarily) assigned. (b) ZFN and ZFNickase-mediated HDR in a
U2OS EGFP reporter line. Cells were co-transfected with the donor
plasmid and plasmids encoding HX735 ZFN pairs composed of active
Left/active Right (+/+), inactive Left/active Right (�/+), active
Left/inactive Right (+/�) and inactive Left/inactive Right (�/�) FokI
domains. The graph shows the percentage of EGFP-positive cells
8 days following transfection. Statistically significant differences in
HDR-based gene correction relative to donor-only control (cto) are
indicated by * (P< 0.05) or ** (P< 0.01).
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Figure 4. Assessment of ZFNickase-mediated HDR and NHEJ using a human cell-based TLR assay. (a) Schematic of the ‘TLR’ HDR-mediated
correction of the EGFP gene with a co-transfected donor template results in EGFP-positive cells. Mutagenic NHEJ events at the nuclease target site
result in mCherry-positive cells. (b) Representative flow cytometry plots showing percentages of EGFP-positive and mCherry-positive cells following
transfection of TLR cell lines with plasmid encoding the indicated ZFNs and ZFNickases and the donor template. In the experiments shown, cells
have been gated for BFP expression (encoded by the plasmid harboring the donor template) to normalize for transfection efficiencies. (c–e) Bar
graphs showing mean percentages of EGFP-positive and mCherry-positive cells for experiments performed with the VF2468, VF2471 and CCR5
ZFNs and ZFNickases. Results were derived from three independent experiments with SEM shown. Statistically significant differences in HDR and
mutagenic NHEJ rates relative to donor-only control (�/�) are indicated by * (P< 0.05) or ** (P< 0.01). (f–h) Ratios of percentage of
EGFP-positive cells to percentage of mCherry-positive cells for the VF2468, VF2471 and CCR5 ZFNs and ZFNickases using the data from
(c–e). Data used to create Figure 4c–h is available in Supplementary Table S3.

5566 Nucleic Acids Research, 2012, Vol. 40, No. 12

http://nar.oxfordjournals.org/cgi/content/full/gks179/DC1


by HDR (41), in part due to the availability of repair
factors for homologous recombination during DNA
replication in S-phase (42). Interestingly, for every target
site we tested in our human cell-based assays, one
ZFNickase combination consistently outperformed the
other with respect to absolute HDR rates and, for those
assayed using the TLR assay, improved HDR:NHEJ
ratios. This reproducible difference does not appear to
be correlated with whether the nicked strand is transcribed
or not, and there were no strand cleavage preferences
discernible from the in vitro data. It is possible that
strand-dependent differences in HDR activity arise due
to different DNA-binding affinities of zinc finger
domains in each monomer and how this may affect
asymmetric accessibility to the break by cellular repair
machinery. Regardless of the precise mechanism, our
results suggest that testing both potential ZFNickases
for a given target site is worthwhile to identify the most
active nickase possible.

Our work demonstrates that ZFNickases with predict-
able strand nicking activities can be easily derived from
ZFNs and that these enzymes can be used in cells to
induce HDR with improved HDR:NHEJ ratios. It will
be of interest in future experiments to test whether
ZFNickase-induced HDR rates can be further increased
by using improved FokI heterodimer frameworks and
hyperactive FokI variants (3,43). Our observation of
reduced mutagenic NHEJ events at the target nicking
site suggest that ZFNickases will also likely induce fewer
mutations at potential off-target sites elsewhere in the
genome, a prediction that can easily be tested for ZFNs
with known off-target sites (15,16). In addition,
site-specific nickases may generally be of interest for the
study of biological phenomena such as replication fork
dynamics. Our results suggest ZFNickases may provide
a means to induce HDR with reduced mutagenesis
caused by NHEJ and that additional optimization of
this platform should be an important goal for future
investigation.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–3 and Supplementary Figure 1.

ACKNOWLEDGEMENTS

We thank Fabienne Lütge (Hannover Medical School) for
technical assistance, Daniel Collette (Massachusetts
General Hospital DNA Core) for help with capillary
electrophoresis data analysis, Steve Halford and Eva
Vanamee for helpful suggestions in the early stages of
this project and Ralph Scully and Lee Zou for helpful
discussions regarding DNA repair.

FUNDING

The National Institutes of Health (NIH) Director’s
Pioneer Award DP1 OD006862 (to J.K.J.); NIH R01
GM088040 (to J.K.J.), P50 HG005550 (to J.K.J.), RL1

CA133832 (to A.M.S.), UL1 DE019582 (to A.M.S.),
R01 AI068885 (to A.P.M.), and T32 GM07270 (to
M.T.C.); the Jim and Ann Orr Massachusetts General
Hospital Research Scholar award (to J.K.J.); the
European Commission (PERSIST–222878 to T.C.);
National Science Foundation Graduate Research
Fellowship (to C.L.R.); Ford Foundation Predoctoral
Fellowship (to C.L.R.). Funding for open access charge:
NIH Director’s Pioneer Award (DP1 OD006862 to J.K.J).

Conflict of interest statement. A.M.S. serves as Chief
Scientific Officer for Cellectis therapeutics, for which he
receives a combination of stock and salary as compen-
sation. A.M.S. is a founder and member of the board of
directors of Pregenen Inc., for which he receives stock
compensation. J.K.J. is a member of the scientific
advisory board of Transposagen Biopharmaceuticals, Inc.

REFERENCES

1. Kim,Y.G., Cha,J. and Chandrasegaran,S. (1996) Hybrid
restriction enzymes: zinc finger fusions to Fok I cleavage domain.
Proc. Natl Acad. Sci. USA, 93, 1156–1160.

2. Mani,M., Smith,J., Kandavelou,K., Berg,J.M. and
Chandrasegaran,S. (2005) Binding of two zinc finger nuclease
monomers to two specific sites is required for effective
double-strand DNA cleavage. Biochem. Biophys. Res. Commun.,
334, 1191–1197.

3. Doyon,Y., Vo,T.D., Mendel,M.C., Greenberg,S.G., Wang,J.,
Xia,D.F., Miller,J.C., Urnov,F.D., Gregory,P.D. and
Holmes,M.C. (2011) Enhancing zinc-finger-nuclease activity with
improved obligate heterodimeric architectures. Nat. Methods, 8,
74–79.

4. Miller,J.C., Holmes,M.C., Wang,J., Guschin,D.Y., Lee,Y.L.,
Rupniewski,I., Beausejour,C.M., Waite,A.J., Wang,N.S.,
Kim,K.A. et al. (2007) An improved zinc-finger nuclease
architecture for highly specific genome editing. Nat. Biotechnol.,
25, 778–785.

5. Szczepek,M., Brondani,V., Buchel,J., Serrano,L., Segal,D.J. and
Cathomen,T. (2007) Structure-based redesign of the dimerization
interface reduces the toxicity of zinc-finger nucleases. Nat.
Biotechnol., 25, 786–793.

6. Sollu,C., Pars,K., Cornu,T.I., Thibodeau-Beganny,S.,
Maeder,M.L., Joung,J.K., Heilbronn,R. and Cathomen,T. (2010)
Autonomous zinc-finger nuclease pairs for targeted chromosomal
deletion. Nucleic Acids Res., 38, 8269–8276.

7. Handel,E.M. and Cathomen,T. (2011) Zinc-finger nuclease based
genome surgery: it’s all about specificity. Curr. Gene Ther., 11,
28–37.

8. Arnould,S., Delenda,C., Grizot,S., Desseaux,C., Paques,F.,
Silva,G.H. and Smith,J. (2011) The I-CreI meganuclease and its
engineered derivatives: applications from cell modification to gene
therapy. Protein Eng. Des. Sel., 24, 27–31.

9. Bogdanove,A.J. and Voytas,D.F. (2011) TAL effectors:
customizable proteins for DNA targeting. Science, 333,
1843–1846.

10. Bibikova,M., Golic,M., Golic,K.G. and Carroll,D. (2002)
Targeted chromosomal cleavage and mutagenesis in Drosophila
using zinc-finger nucleases. Genetics, 161, 1169–1175.

11. Brunet,E., Simsek,D., Tomishima,M., DeKelver,R., Choi,V.M.,
Gregory,P., Urnov,F., Weinstock,D.M. and Jasin,M. (2009)
Chromosomal translocations induced at specified loci in human
stem cells. Proc. Natl Acad. Sci. USA, 106, 10620–10625.

12. Hartlerode,A.J. and Scully,R. (2009) Mechanisms of
double-strand break repair in somatic mammalian cells. Biochem.
J., 423, 157–168.

13. Zou,J., Sweeney,C.L., Chou,B.K., Choi,U., Pan,J., Wang,H.,
Dowey,S.N., Cheng,L. and Malech,H.L. (2011) Oxidase-deficient
neutrophils from X-linked chronic granulomatous disease iPS

Nucleic Acids Research, 2012, Vol. 40, No. 12 5567

http://nar.oxfordjournals.org/cgi/content/full/gks179/DC1


cells: functional correction by zinc finger nuclease-mediated safe
harbor targeting. Blood, 117, 5561–5572.

14. Maeder,M.L., Thibodeau-Beganny,S., Osiak,A., Wright,D.A.,
Anthony,R.M., Eichtinger,M., Jiang,T., Foley,J.E., Winfrey,R.J.,
Townsend,J.A. et al. (2008) Rapid ‘‘open-source’’ engineering of
customized zinc-finger nucleases for highly efficient gene
modification. Mol. Cell, 31, 294–301.

15. Pattanayak,V., Ramirez,C.L., Joung,J.K. and Liu,D.R. (2011)
Revealing off-target cleavage specificities of zinc-finger nucleases
by in vitro selection. Nat. Methods, 8, 765–770.

16. Gabriel,R., Lombardo,A., Arens,A., Miller,J.C., Genovese,P.,
Kaeppel,C., Nowrouzi,A., Bartholomae,C.C., Wang,J.,
Friedman,G. et al. (2011) An unbiased genome-wide analysis of
zinc-finger nuclease specificity. Nat. Biotechnol., 29, 816–823.

17. Holmquist,G.P. (1998) Endogenous lesions, S-phase-independent
spontaneous mutations, and evolutionary strategies for base
excision repair. Mutat. Res., 400, 59–68.

18. Weinstock,D.M. and Jasin,M. (2006) Alternative pathways for the
repair of RAG-induced DNA breaks. Mol. Cell Biol., 26,
131–139.

19. Lee,G.S., Neiditch,M.B., Salus,S.S. and Roth,D.B. (2004) RAG
proteins shepherd double-strand breaks to a specific pathway,
suppressing error-prone repair, but RAG nicking initiates
homologous recombination. Cell, 117, 171–184.

20. Holliday,R. (2007) A mechanism for gene conversion in fungi.
Genet. Res., 89, 285–307.

21. Meselson,M.S. and Radding,C.M. (1975) A general model for
genetic recombination. Proc. Natl Acad. Sci. USA, 72, 358–361.

22. Certo,M.T., Ryu,B.Y., Annis,J.E., Garibov,M., Jarjour,J.,
Rawlings,D.J. and Scharenberg,A.M. (2011) Tracking genome
engineering outcome at individual DNA breakpoints. Nat.
Methods, 8, 671–676.

23. Metzger,M.J., McConnell-Smith,A., Stoddard,B.L. and
Miller,A.D. (2011) Single-strand nicks induce homologous
recombination with less toxicity than double-strand breaks using
an AAV vector template. Nucleic Acids Res., 39, 926–935.

24. Chan,S.H., Stoddard,B.L. and Xu,S.Y. (2011) Natural and
engineered nicking endonucleases–from cleavage mechanism to
engineering of strand-specificity. Nucleic Acids Res., 39, 1–18.

25. van Nierop,G.P., de Vries,A.A., Holkers,M., Vrijsen,K.R. and
Goncalves,M.A. (2009) Stimulation of homology-directed gene
targeting at an endogenous human locus by a nicking
endonuclease. Nucleic Acids Res., 37, 5725–5736.

26. McConnell Smith,A., Takeuchi,R., Pellenz,S., Davis,L.,
Maizels,N., Monnat,R.J. Jr and Stoddard,B.L. (2009) Generation
of a nicking enzyme that stimulates site-specific gene conversion
from the I-AniI LAGLIDADG homing endonuclease. Proc. Natl
Acad. Sci. USA, 106, 5099–5104.

27. Davis,L. and Maizels,N. (2011) DNA nicks promote efficient and
safe targeted gene correction. PLoS One, 6, e23981.

28. Bitinaite,J., Wah,D.A., Aggarwal,A.K. and Schildkraut,I. (1998)
FokI dimerization is required for DNA cleavage. Proc. Natl
Acad. Sci. USA, 95, 10570–10575.

29. Waugh,D.S. and Sauer,R.T. (1993) Single amino acid
substitutions uncouple the DNA binding and strand scission
activities of Fok I endonuclease. Proc. Natl Acad. Sci. USA, 90,
9596–9600.

30. Beumer,K., Bhattacharyya,G., Bibikova,M., Trautman,J.K. and
Carroll,D. (2006) Efficient gene targeting in Drosophila with
zinc-finger nucleases. Genetics, 172, 2391–2403.

31. Sanders,K.L., Catto,L.E., Bellamy,S.R. and Halford,S.E. (2009)
Targeting individual subunits of the FokI restriction
endonuclease to specific DNA strands. Nucleic Acids Res., 37,
2105–2115.

32. Lombardo,A., Genovese,P., Beausejour,C.M., Colleoni,S.,
Lee,Y.L., Kim,K.A., Ando,D., Urnov,F.D., Galli,C.,
Gregory,P.D. et al. (2007) Gene editing in human stem cells using
zinc finger nucleases and integrase-defective lentiviral vector
delivery. Nat. Biotechnol., 25, 1298–1306.

33. Perez,E.E., Wang,J., Miller,J.C., Jouvenot,Y., Kim,K.A., Liu,O.,
Wang,N., Lee,G., Bartsevich,V.V., Lee,Y.L. et al. (2008)
Establishment of HIV-1 resistance in CD4+ T cells by genome
editing using zinc-finger nucleases. Nat. Biotechnol., 26,
808–816.

34. Hoover,D.M. and Lubkowski,J. (2002) DNAWorks: an
automated method for designing oligonucleotides for PCR-based
gene synthesis. Nucleic Acids Res., 30, e43.

35. Maeder,M.L., Thibodeau-Beganny,S., Sander,J.D., Voytas,D.F.
and Joung,J.K. (2009) Oligomerized pool engineering (OPEN): an
’open-source’ protocol for making customized zinc-finger arrays.
Nat. Protoc., 4, 1471–1501.

36. Townsend,J.A., Wright,D.A., Winfrey,R.J., Fu,F., Maeder,M.L.,
Joung,J.K. and Voytas,D.F. (2009) High-frequency modification
of plant genes using engineered zinc-finger nucleases. Nature, 459,
442–445.

37. Alwin,S., Gere,M.B., Guhl,E., Effertz,K., Barbas,C.F. 3rd,
Segal,D.J., Weitzman,M.D. and Cathomen,T. (2005) Custom
zinc-finger nucleases for use in human cells. Mol. Ther., 12,
610–617.

38. Cornu,T.I., Thibodeau-Beganny,S., Guhl,E., Alwin,S.,
Eichtinger,M., Joung,J.K. and Cathomen,T. (2008) DNA-binding
specificity is a major determinant of the activity and toxicity of
zinc-finger nucleases. Mol. Ther., 16, 352–358.

39. Mussolino,C., Morbitzer,R., Lutge,F., Dannemann,N., Lahaye,T.
and Cathomen,T. (2011) A novel TALE nuclease scaffold enables
high genome editing activity in combination with low toxicity.
Nucleic Acids Res., 39, 9283–9293.

40. Cradick,T.J., Keck,K., Bradshaw,S., Jamieson,A.C. and
McCaffrey,A.P. (2010) Zinc-finger nucleases as a novel
therapeutic strategy for targeting hepatitis B virus DNAs.
Mol. Ther., 18, 947–954.

41. Saleh-Gohari,N., Bryant,H.E., Schultz,N., Parker,K.M.,
Cassel,T.N. and Helleday,T. (2005) Spontaneous homologous
recombination is induced by collapsed replication forks that are
caused by endogenous DNA single-strand breaks. Mol. Cell Biol.,
25, 7158–7169.

42. Hartlerode,A., Odate,S., Shim,I., Brown,J. and Scully,R. (2011)
Cell cycle-dependent induction of homologous recombination
by a tightly regulated I-SceI fusion protein. PLoS One, 6,
e16501.

43. Guo,J., Gaj,T. and Barbas,C.F. 3rd (2010) Directed evolution of
an enhanced and highly efficient FokI cleavage domain for zinc
finger nucleases. J. Mol. Biol., 400, 96–107.

5568 Nucleic Acids Research, 2012, Vol. 40, No. 12


